If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+6u+3=0
a = 1; b = 6; c = +3;
Δ = b2-4ac
Δ = 62-4·1·3
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{6}}{2*1}=\frac{-6-2\sqrt{6}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{6}}{2*1}=\frac{-6+2\sqrt{6}}{2} $
| 3*4^(3x-6)+2=35 | | 3(4)^(3x-6)+2=35 | | 2x-2+2x+8=90 | | 7/3+x=3 | | Y-20=180°-y | | 39x-3=15 | | -2x-x=-7-2 | | 6(9-x)-3(8x-3=6x-9 | | 2^x=4+2x | | 2^x=+2x | | v+6/v+3=(v-5/v-3)+1 | | 6x-14=4x+1 | | -3(4x-2)=-6(2x- | | v+6/v+3=v-5/v-3+1 | | -(3x-7)=3(7-2x)-13 | | 9x^2=30x-25= | | 5^(-2x/3)=0.63 | | 0=21x+49 | | 2/3x+1/3=13x+2/3 | | ((-3/10)x^2)-x-40=0 | | -6(2x-1)=12x+ | | -1-r=3 | | -8+k/2=-11 | | 4(x-3)+2=3/2(x+2)+10 | | x/4(-5)=-4 | | 36=w/8+30 | | 7(6x+4)=-15-x | | 236=3πr2 | | 14+8d=-26 | | 7+8j=87 | | -(3n+6)=-8-2n | | 4(g-91)=36 |